Difference between revisions of "Cascaded Bandpass Filter"

From PrattWiki
Jump to navigation Jump to search
Line 1: Line 1:
This page analyzes a cascaded bandpass filter - specifically the one proposed in Alexander & Sadiku Fig. 14.45.
+
This page analyzes a cascaded bandpass filter - specifically the one proposed in Alexander & Sadiku<ref name=AS>Alexander, Charles and Sadkiu, Matthew.  Fundamentals of Electric Circuits.  4th ed.  McGraw-Hill, 2009</ref> Fig. 14.45  
 +
 
 +
<!--
 +
or by Rizzoni<ref name=Rizzoni>Rizzoni, Giorgio.  Principles and applications of electrical engineering / Giorgio Rizzoni, Tom Hartley. - 5th ed.  McGraw-Hill, 2007. </ref>  on p. 439.
 +
-->
  
 
== Analysis ==
 
== Analysis ==
The cascaded bandpass filter uses a first-order lowpass filter, followed by a first-order highpass filter, followed by an inverting amplifier to raise or lower to total passband gain to some desired level.  The equation given is:
+
The cascaded bandpass filter uses a first-order lowpass filter, followed by a first-order highpass filter, followed by an inverting amplifier to raise or lower to total passband gain to some desired level.  The equation given in Alexander & Sadiku is:
 
<center><math>
 
<center><math>
 
\begin{align}
 
\begin{align}
H&=\frac{V_o}{V_i}=
+
H=\frac{V_o}{V_i}&=
 
\left(-\frac{1}{1+j\omega C_1R} \right)
 
\left(-\frac{1}{1+j\omega C_1R} \right)
 
\left(-\frac{j\omega C_2R}{1+j\omega C_2R} \right)
 
\left(-\frac{j\omega C_2R}{1+j\omega C_2R} \right)
\left(-\frac{R_f}{R_i}\right)
+
\left(-\frac{R_f}{R_i}\right)\\
 +
&=-\frac{R_f}{R_i}\frac{j\omega C_2R}{(1+j\omega C_1R)(1+j\omega C_2R)}
 +
\end{align}
 +
</math></center>
 +
and as noted in Alexander & Sadiku, defining constants:
 +
<center><math>
 +
\begin{align}
 +
\omega_1&=\frac{1}{RC_2} & \omega_2&=\frac{1}{RC_1}
 +
\end{align}
 +
</math></center>
 +
the transfer function can be written as:
 +
<center><math>
 +
\begin{align}
 +
H&=-\frac{R_f}{R_i}\frac{j\omega \omega_2}{(j\omega+\omega_1)(j\omega+\omega_2)}\\
 +
&=-\frac{\frac{R_f}{R_i}j\omega \omega_2}{(j\omega)^2+(\omega_1+\omega_2)(j\omega)+\omega_1\omega_2}
 
\end{align}
 
\end{align}
\</center></math>
+
</math></center>
 
 
 
 
  
Without inductors, the most likely candidate for such a filter would be the filter on p. 439 of the Rizzoni text<ref name=Rizzoni>Rizzoni, Giorgio.  Principles and applications of electrical engineering / Giorgio Rizzoni, Tom Hartley. - 5th ed.  McGraw-Hill, 2007. </ref> which uses a series combination of a resistor and capacitor as <math>Z_N</math> and a parallel combination as <math>Z_F</math>.  This leads to an overall transfer function of:
 
<center><math>\begin{align}
 
H=-\frac{j\omega C_NR_F}{(1+j\omega C_FR_F)(1+j\omega C_NR_N)}
 
\end{align}</math></center>
 
 
or, as re-cast in class,
 
or, as re-cast in class,
 
<center><math>\begin{align}
 
<center><math>\begin{align}
 
H=\frac{K2\zeta\omega_n j\omega}{(j\omega)^2+2\zeta\omega_n j\omega+\omega_n^2}=
 
H=\frac{K2\zeta\omega_n j\omega}{(j\omega)^2+2\zeta\omega_n j\omega+\omega_n^2}=
-\frac{\left(\frac{C_NR_F}{C_NR_N+C_FR_F}\right)\left(\frac{1}{C_FR_F}+\frac{1}{C_NR_N}\right)}{(j\omega)^2+\left(\frac{1}{C_FR_F}+\frac{1}{C_NR_N}\right)j\omega+\frac{1}{C_FR_FC_NR_N}}
+
\frac{\left(-\frac{R_f}{R_i}\frac{\omega_2}{\omega_1+\omega_2}\right)(\omega_1+\omega_2)j\omega}{(j\omega)^2+\left(\omega_1+\omega_2\right)j\omega+\omega_1\omega_2}
 
\end{align}</math></center>
 
\end{align}</math></center>
To make life a little easier, let's call
+
 
 +
This means the passband gain (which is an absolute value), natural frequency, and damping ratio are, respectively,
 
<center><math>\begin{align}
 
<center><math>\begin{align}
\omega_1&=\frac{1}{C_FR_F} & \omega_2&=\frac{1}{C_NR_N}
+
K&=\frac{R_f}{R_i}\frac{\omega_2}{\omega_1+\omega_2}\\
 +
BW&=\omega_1+\omega_2 \\
 +
\omega_n&=\sqrt{\omega_1\omega_2}\\
 +
\zeta&=\frac{\omega_1+\omega_2}{2\sqrt{\omega_1\omega_2}}
 
\end{align}</math></center>
 
\end{align}</math></center>
which means
+
 
<center><math>\begin{align}
+
From this, you can determine the quality and the bandwidth:
H=-\frac{\left(\frac{C_NR_F}{C_NR_N+C_FR_F}\right)\left(\omega_1+\omega_2\right)}{(j\omega)^2+\left(\omega_1+\omega_2\right)j\omega+\omega_1\omega_2}
+
<center><math>
\end{align}</math></center>
+
\begin{align}
This means the bandwidth and natural frequency squared are, respectively,
+
Q&=\frac{1}{2\zeta}=\frac{\sqrt{\omega_1\omega_2}}{\omega_1+\omega_2}\\
<center><math>\begin{align}
+
BW&=\frac{\omega_n}{Q}=2\zeta\omega_n=\omega_1+\omega_2
BW&=\omega_1+\omega_2 \\ \omega_n^2&=\omega_1\omega_2
+
\end{align}
\end{align}</math></center>
+
</math></center>
Good so far...
+
 
 +
This is where disagreement with the book comes in; the book assumes that the bandwidth is the '''difference''' between the highpass stage's cutoff and the lowpass stage's cutoff.  This fails to take into account, however, the fact that these are not ideal filters.  The highpass filter's gain is not just 1 for frequencies higher than <math>\omega_1</math> nor is the lowpass filter's gain just 1 for frequencies lower than <math>\omega_2</math>.  Because of that, the actual half-power frequencies are different from the corners of the first-order filters.  Specifically,
 +
<center><math>
 +
\begin{align}
 +
\omega_{cen,lin}&=\omega_n\frac{\sqrt{1+4Q^2}}{2Q}=\frac{1}{2}\sqrt{\omega^2_1+6\omega_1\omega_2+\omega^2_2}\\
 +
\omega_{hp}&=\omega_{cen,lin}\pm\frac{BW}{2}\\
 +
&=\frac{1}{2}\left(\sqrt{\omega^2_1+6\omega_1\omega_2+\omega^2_2} \pm (\omega_1+\omega_2)\right)
 +
\end{align}
 +
</math></center>
  
 
[[Category:EGR 119]]
 
[[Category:EGR 119]]

Revision as of 21:42, 22 March 2010

This page analyzes a cascaded bandpass filter - specifically the one proposed in Alexander & Sadiku[1] Fig. 14.45


Analysis

The cascaded bandpass filter uses a first-order lowpass filter, followed by a first-order highpass filter, followed by an inverting amplifier to raise or lower to total passband gain to some desired level. The equation given in Alexander & Sadiku is:

\( \begin{align} H=\frac{V_o}{V_i}&= \left(-\frac{1}{1+j\omega C_1R} \right) \left(-\frac{j\omega C_2R}{1+j\omega C_2R} \right) \left(-\frac{R_f}{R_i}\right)\\ &=-\frac{R_f}{R_i}\frac{j\omega C_2R}{(1+j\omega C_1R)(1+j\omega C_2R)} \end{align} \)

and as noted in Alexander & Sadiku, defining constants:

\( \begin{align} \omega_1&=\frac{1}{RC_2} & \omega_2&=\frac{1}{RC_1} \end{align} \)

the transfer function can be written as:

\( \begin{align} H&=-\frac{R_f}{R_i}\frac{j\omega \omega_2}{(j\omega+\omega_1)(j\omega+\omega_2)}\\ &=-\frac{\frac{R_f}{R_i}j\omega \omega_2}{(j\omega)^2+(\omega_1+\omega_2)(j\omega)+\omega_1\omega_2} \end{align} \)

or, as re-cast in class,

\(\begin{align} H=\frac{K2\zeta\omega_n j\omega}{(j\omega)^2+2\zeta\omega_n j\omega+\omega_n^2}= \frac{\left(-\frac{R_f}{R_i}\frac{\omega_2}{\omega_1+\omega_2}\right)(\omega_1+\omega_2)j\omega}{(j\omega)^2+\left(\omega_1+\omega_2\right)j\omega+\omega_1\omega_2} \end{align}\)

This means the passband gain (which is an absolute value), natural frequency, and damping ratio are, respectively,

\(\begin{align} K&=\frac{R_f}{R_i}\frac{\omega_2}{\omega_1+\omega_2}\\ BW&=\omega_1+\omega_2 \\ \omega_n&=\sqrt{\omega_1\omega_2}\\ \zeta&=\frac{\omega_1+\omega_2}{2\sqrt{\omega_1\omega_2}} \end{align}\)

From this, you can determine the quality and the bandwidth:

\( \begin{align} Q&=\frac{1}{2\zeta}=\frac{\sqrt{\omega_1\omega_2}}{\omega_1+\omega_2}\\ BW&=\frac{\omega_n}{Q}=2\zeta\omega_n=\omega_1+\omega_2 \end{align} \)

This is where disagreement with the book comes in; the book assumes that the bandwidth is the difference between the highpass stage's cutoff and the lowpass stage's cutoff. This fails to take into account, however, the fact that these are not ideal filters. The highpass filter's gain is not just 1 for frequencies higher than \(\omega_1\) nor is the lowpass filter's gain just 1 for frequencies lower than \(\omega_2\). Because of that, the actual half-power frequencies are different from the corners of the first-order filters. Specifically,

\( \begin{align} \omega_{cen,lin}&=\omega_n\frac{\sqrt{1+4Q^2}}{2Q}=\frac{1}{2}\sqrt{\omega^2_1+6\omega_1\omega_2+\omega^2_2}\\ \omega_{hp}&=\omega_{cen,lin}\pm\frac{BW}{2}\\ &=\frac{1}{2}\left(\sqrt{\omega^2_1+6\omega_1\omega_2+\omega^2_2} \pm (\omega_1+\omega_2)\right) \end{align} \)
  1. Alexander, Charles and Sadkiu, Matthew. Fundamentals of Electric Circuits. 4th ed. McGraw-Hill, 2009