Statistics Symbols

From PrattWiki
Jump to: navigation, search

This page is specifically for people in EGR 103 and represents a concordance of sorts among the lectures and the two textbooks with respect to different symbols for statistical quantities.

Symbols

The entries in the "Palm" column are taken from William J. Palm III's Introduction to Matlab 7 for Engineers, 2/e[1] book, while those in the "Chapra" column are taken from Steven C. Chapra's Applied Numerical Methods with MATLAB for Engineers and Scientists, 2/e[2] book. Entries in the "EGR 103" column, when not taken from Chapra or Palm, have been developed over the course of several years' of EGR 103 lectures. 
\begin{array}{|c|c|c|c|}\hline
\mbox{Quantity} & \mbox{Palm} & \mbox{Chapra} & \mbox{EGR 103}\\ \hline
\mbox{Independent Data} & 
x & x & x
\\ \hline
\mbox{Dependent Data} & 
y & y & y
\\ \hline
\mbox{Individual Elements} &
y_i & y_i & y_i
\\ \hline
\mbox{Mean Value} &
\bar{y}=\frac{1}{n}\sum_{i=1}^ny_i &
\bar{y}=\frac{\sum y_i}{n} &
\bar{y}=\frac{\sum y_i}{n}
\\ \hline
\mbox{Sum of Squares of Data Residuals} &
S=\sum_{i=1}^m\left(y_i-\bar{y}\right)^2 &
S_t=\sum\left(y_i-\bar{y}\right)^2 &
S_t = \sum\left(y_i-\bar{y}\right)^2 
\\ \hline
\mbox{(Sample) Standard Deviation} &
\sigma=\sqrt{\frac{\sum_{i=1}^n(y_i-\bar{y})^2}{n-1}} & 
s_y=\sqrt{\frac{S_t}{n-1}} &
s_y=\sqrt{\frac{S_t}{n-1}}
\\ \hline
\mbox{Coefficient of Variation} &
\mbox{Not Used} &
\mbox{c.v.}=\frac{s_y}{\bar{y}}*100\% &
\mbox{c.v.}=\frac{s_y}{\bar{y}}*100\% 
\\ \hline
\mbox{Estimates (Linear)} &
f(x_i) &
a_0+a_1x_i&
\hat{y}_i=P(1)x_i+P(2)
\\ \hline
\mbox{Estimates (General)} &
f(x_i) &
\hat{y}_i=\sum_{j=0}^ma_jz_{ji} &
\hat{y}_i=\sum_{k=1}^Na_k\phi_k(x_i)
\\ \hline
\mbox{Sum of Squares of Estimate Residuals (linear fit)} & 
J=\sum_{i=1}^m\left[f(x_i)-y_i\right]^2 &
S_r=\sum\left(y_i-a_0-a_1x_i\right)^2 &
S_r=\sum\left(y_i-\hat{y}_i\right)^2 
\\ \hline
\mbox{Standard Error of the Estimate (linear fit)} &
\mbox{Not Used} &
s_{y/x} = \sqrt{\frac{S_r}{n-2}}&
s_{y/x} = \sqrt{\frac{S_r}{n-2}}
\\ \hline
\mbox{Sum of Squares of Estimate Residuals (general fit)} & 
\mbox{Not Used} &
S_r=\sum_{i=1}^{n}
\left(y_i-\hat{y}\right)^2 &
S_r=\sum\left(y_i-\hat{y}_i\right)^2 
\\ \hline
\mbox{Standard Error of the Estimate (general fit)} &
\mbox{Not Used} &
s_{y/x} = \sqrt{\frac{S_r}{n-(m+1)}}&
s_{y/x} = \sqrt{\frac{S_r}{n-N}}
\\ \hline
\mbox{Coefficient of Determination} &
r^2=1-\frac{J}{S} &
r^2=\frac{S_t-S_r}{S_t} & 
r^2=\frac{S_t-S_r}{S_t} \\ \hline
\end{array}


Questions

Post your questions by editing the discussion page of this article. Edit the page, then scroll to the bottom and add a question by putting in the characters *{{Q}}, followed by your question and finally your signature (with four tildes, i.e. ~~~~). Using the {{Q}} will automatically put the page in the category of pages with questions - other editors hoping to help out can then go to that category page to see where the questions are. See the page for Template:Q for details and examples.

External Links

References

  1. Introduction to Matlab 7 for Engineers, 2/e, William Palm III
  2. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2/e, Steven C. Chapra