This page analyzes a cascaded bandpass filter - specifically the one proposed in Alexander & Sadiku[1] Fig. 14.45
Analysis
The cascaded bandpass filter uses a first-order lowpass filter, followed by a first-order highpass filter, followed by an inverting amplifier to raise or lower to total passband gain to some desired level. The equation given in Alexander & Sadiku is:
\(
\begin{align}
H=\frac{V_o}{V_i}&=
\left(-\frac{1}{1+j\omega C_1R} \right)
\left(-\frac{j\omega C_2R}{1+j\omega C_2R} \right)
\left(-\frac{R_f}{R_i}\right)\\
&=-\frac{R_f}{R_i}\frac{j\omega C_2R}{(1+j\omega C_1R)(1+j\omega C_2R)}
\end{align}
\)
and as noted in Alexander & Sadiku, defining constants:
\(
\begin{align}
\omega_1&=\frac{1}{RC_2} & \omega_2&=\frac{1}{RC_1}
\end{align}
\)
the transfer function can be written as:
\(
\begin{align}
H&=-\frac{R_f}{R_i}\frac{j\omega \omega_2}{(j\omega+\omega_1)(j\omega+\omega_2)}\\
&=-\frac{\frac{R_f}{R_i}j\omega \omega_2}{(j\omega)^2+(\omega_1+\omega_2)(j\omega)+\omega_1\omega_2}
\end{align}
\)
or, as re-cast in class,
\(\begin{align}
H=\frac{K2\zeta\omega_n j\omega}{(j\omega)^2+2\zeta\omega_n j\omega+\omega_n^2}=
\frac{\left(-\frac{R_f}{R_i}\frac{\omega_2}{\omega_1+\omega_2}\right)(\omega_1+\omega_2)j\omega}{(j\omega)^2+\left(\omega_1+\omega_2\right)j\omega+\omega_1\omega_2}
\end{align}\)
This means the passband gain (which is an absolute value), natural frequency, and damping ratio are, respectively,
\(\begin{align}
K&=\frac{R_f}{R_i}\frac{\omega_2}{\omega_1+\omega_2}\\
BW&=\omega_1+\omega_2 \\
\omega_n&=\sqrt{\omega_1\omega_2}\\
\zeta&=\frac{\omega_1+\omega_2}{2\sqrt{\omega_1\omega_2}}
\end{align}\)
From this, you can determine the quality and the bandwidth:
\(
\begin{align}
Q&=\frac{1}{2\zeta}=\frac{\sqrt{\omega_1\omega_2}}{\omega_1+\omega_2}\\
BW&=\frac{\omega_n}{Q}=2\zeta\omega_n=\omega_1+\omega_2
\end{align}
\)
This is where disagreement with the book comes in; the book assumes that the bandwidth is the difference between the highpass stage's cutoff and the lowpass stage's cutoff. This fails to take into account, however, the fact that these are not ideal filters. The highpass filter's gain is not just 1 for frequencies higher than \(\omega_1\) nor is the lowpass filter's gain just 1 for frequencies lower than \(\omega_2\). Because of that, the actual half-power frequencies are different from the corners of the first-order filters. Specifically,
\(
\begin{align}
\omega_{cen,lin}&=\omega_n\frac{\sqrt{1+4Q^2}}{2Q}=\frac{1}{2}\sqrt{\omega^2_1+6\omega_1\omega_2+\omega^2_2}\\
\omega_{hp}&=\omega_{cen,lin}\pm\frac{BW}{2}\\
&=\frac{1}{2}\left(\sqrt{\omega^2_1+6\omega_1\omega_2+\omega^2_2} \pm (\omega_1+\omega_2)\right)
\end{align}
\)
- ↑ Alexander, Charles and Sadkiu, Matthew. Fundamentals of Electric Circuits. 4th ed. McGraw-Hill, 2009