EGR 224/Spring 2024/Test 1

From PrattWiki
Revision as of 17:36, 13 February 2024 by DukeEgr93 (talk | contribs) (Created page with "This page contains the list of topics for EGR 224 Test 1. The test covers through Lecture 9, Lab 4, and Homework 4, though with respect to the labs, neither TinkerCad nor...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This page contains the list of topics for EGR 224 Test 1. The test covers through Lecture 9, Lab 4, and Homework 4, though with respect to the labs, neither TinkerCad nor Multisim will be involved.

Note: tests Spring 2020 and before were closed-book, closed-note. Summer 2020 and Spring 2021 were open-book, open-note. Spring 2022 returned to closed-book, and Spring 2024 will also be closed-book. Note that the instructions on the front of the test will be very similar to the instructions on the front of the Spring 2023 test.

Previous Tests

Previous EGR 224 (119) tests are available at Dr. G's Big Box of Random. Note that the EGR 119 Test I from 2008 is not as relevant to the current course as the newer tests are. Furthermore, the following problems from other classes' tests are relevant:

  • BME 153 Test 1 Spring 2009
    All
  • ECE 61 Test 1 Spring 2001
    I-IV
  • ECE 61 Test 1 Fall 2001
    I-IV
  • ECE 61 Test 2 Spring 2001
    II-III
  • ECE 61 Test 2 Fall 2001
    II
  • ECE 110 Test 1's (2012-present)
    Most problems - ignore anything with digital logic, switches, capacitors, or inductors
  • ECE 110 Test 2 Fall 2014, Spring 2015, Fall 2015, Spring 2016, Fall 2016, Spring 2018
    IV for all (T/N)
    Also V for Spring 2018 (T/N)

Test I Coverage

  1. Basic electrical entities - be able to fill in the following chart:
    \(\begin{align} \begin{array}{cccc} \mbox{Name} & \mbox{Variable} & \mbox{Units} & \mbox{Equation} \\ \hline \hline \mbox{charge} & q & \mbox{coulombs (C)} & q(t) = q(t_0) + \int_{t_0}^t i(\tau)~d\tau \\ \hline \mbox{current} & i & \mbox{amperes (A)} & i = \frac{dq}{dt} \\ \hline \mbox{work} & w & \mbox{joules (J)} & \\ \hline \mbox{voltage} & v & \mbox{volts (V)} & v = \frac{dw}{dq} \\ \hline \mbox{power} & p & \mbox{watts (W)} & p = \frac{dw}{dt} = vi \\ \hline \mbox{resistance} & R & \mbox{ohms}~(\Omega) & R = \frac{v}{i} \\ \hline \mbox{conductance} & G & \mbox{siemens (S)} & \\ \hline \end{array} \end{align}\)
  2. Power - know the general equation for instantaneous power absorbed or delivered by an element, and know three equations that can be used to calculate power in a resistive element. Know the difference between absorbed power and delivered power. Be able to solve circuit variables using the idea that net power in a circuit is zero.
  3. Sources - know the four kinds of dependent source and the properties of sources (i.e. current sources can have any voltage across them and voltage sources can have any amount of current through them).
  4. Ohm’s Law - know Ohm’s Law and the requirement of the passive sign convention for resistors.
  5. Kirchhoff’s Laws - know what Kirchhoff’s Laws are, be able to state them clearly in words, and be able to apply them to circuit elements to solve for unknown currents and voltages.
  6. Equivalent resistances - be able to simplify a resistive network with series and parallel resistances.
  7. Node voltage method - be able to solve for voltages, currents, and power absorbed or delivered by clearly using the node voltage method to determine node voltages, possibly followed by functions of those node voltages to get currents or powers.
  8. Current methods - be able to solve for voltages, currents, and powers absorbed or delivered by clearly using the mesh or branch current method to determine mesh or branch currents, possibly followed by functions of those currents to get element currents, voltages, or powers. Note - you will get to pick if you use the mesh current or branch current method.
  9. Current and voltage division - be able to efficiently solve circuit problems by using current and voltage division.
  10. Superposition - be able to efficiently solve circuit problems by using superposition.
    • In life, remember that dependent sources must be included in the different subdivisions of a superposition problem regardless of the independent source or sources you leave on. On the test however, the superposition problem -- if there is one -- will not have a dependent source.
  11. Thévenin and Norton Equivalent Circuits - be able to solve for the source and resistance of a Thévenin or Norton Equivalent Circuit for a circuit comprised of resistors and 0 or more each of independent and dependent sources. Be able to draw both Thévenin and Norton Equivalent Circuits. Be able to use Thévenin and Norton Equivalent Circuits to determine the maximum power delivered to a load and the required resistance of that load to receive the maximum power. Remember that if there are controlled sources requiring unknown currents or voltages to be solved, those currents or voltages may be different when finding $$v_{oc}$$ versus $$i_{sc}$$.

Specifically Not On The Test

  1. Reactive elements (inductors and capacitors)
  2. Python, SymPy, Tinkercad, Multisim, or Arduino
  3. Delta-Wye / Pi-T conversions