EGR 103/Concept List/F22
Jump to navigation
Jump to search
Contents
Lecture 1 - 8/29 - Course Introduction
- Main class page: EGR 103L
- Includes links to Sakai, Pundit, and Ed pages
- Sakai page: Sakai 103L page; grades, surveys and tests, some assignment submissions; first day slideshow in Resources section
Lecture 2 - 8/27 - Programs and Programming
- Almost all languages have input, output, math, conditional execution (decisions), and repetition (loops)
- Seven steps of programming The Seven Steps Poster. Also, for Monday's class:
- Watch video on Developing an Algorithm
- Watch video on A Seven Step Approach to Solving Programming Problems
- Problem: Consider how to decide if a number is a prime number
- Some "shortcuts" for specific factors but need to have a generalized approach
- See if number is evenly divisible by any integer between 2 and the square root of the number - but how do we ask the computer to do that?
- Quick tour of Python
- Console (with history tab), variable explorer (with other tabs), and editing window
- Main numerical types: whole numbers (int) and numbers with decimals (float)
- Can use % (called "mod") to get "remainder"
- If both items are integers, result is an integer; if either is a float, result is a float
- Relational operators: < <= == >= > !=
- Result is is either
True
orFalse
- Result is is either
- Comments in code:
- If there is a
#
, Python ignores everything remaining in that line after the # - If there are
"""
or, Python ignores everything until the closing
"""
or - If you use
# %%
in Spyder, the editing window will set up a cell and light up the cell your cursor is in. Cells have no impact on how the code runs, just how the code appears in the window
- If there is a
Lecture 3 - 9/5 - "Number" Types
- Python is a "typed" language
- Focus of the day: int, float, and array
- int: integers; Python 3 can store these perfectly
- float: floating point numbers - "numbers with decimal points" - Python sometimes has problems storing floating point items exactly
- Focus a little later: string, list, tuple
- Focus later: dictionary, set
- Focus way later: map, filter, zip
- Focus of the day: int, float, and array
- Basic operations and types
- + - * // (rounded division) and % (remainder / modulo) produce int if both sides are an int, float if either or both are floats
- / (regular division) and // (rounded division) produces float with ints or floats
- ** to do powers
VAR = input("prompt: ")
will ask the user for a value and stores whatever they type as a string (broken in some versions of Spyder!)NUM = int(VAR)
- If VAR is an int or a float, it will return an int rounded towards 0
- If VAR is a string, it will return an int only if the string looks exactly like an integer
NUM = float(VAR)
- If VAR is an int or a float, it will return a float with the same value
- If VAR is a string, it will return a float if the string looks like a float, including scientific notation such as
float("1.23e4")
- Arrays
- Python doesn't know everything to start with; may need to import things
import MODULE
means usingMODULE.function()
to runimport MODULE as NAME
means usingNAME.function()
to run
- Organizational unit for storing rectangular arrays of numbers
- Generally create with np.array(LIST) where depth of nested LIST is dimensionality of array
- np.array([1, 2, 3]) is a 1-dimensional array with 3 elements
- np.array([[1, 2, 3], [4, 5, 6]]) is a 2-dimension array with 2 rows and 3 columns
- Python doesn't know everything to start with; may need to import things
- Math with "Number" types works the way you expect
- ** * / // % + -
- With arrays, * and / work element by element; *matrix* multiplication is a different character (specifically, @)
- Relational operators can compare "Number" Types and work the way you expect with True or False as an answer
- < <= == >= > !=
- With arrays, either same size or one is a single value; result will be an array of True and False the same size as the array
- Slices allow us to extract information from a collection or change information in mutable collections
- a[0] is the element in a at the start
- a[3] is the element in a three away from the start
- a[-1] is the last element of a
- a[-2] is the second-to-last element of a
- a[:] is all the elements in a because what is really happening is:
- a[start:until] where start is the first index and until is just *past* the last index;
- a[3:7] will return a[3] through a[6] in a 4-element array
- a[start:until:increment] will skip indices by increment instead of 1
- To go backwards, a[start:until:-increment] will start at an index and then go backwards until getting at or just past until.
- For 2-D arrays, you can index items with either separate row and column indices or indices separated by commas:
- a[2][3] is the same as a[2, 3]
- Only works for arrays!
Lecture 4 - 9/9 - Other Types
- Lists are set off with [ ] and entries can be any valid type (including other lists!); entries can be of different types from other entries; list items can be changed and mutable items within lists can be changed. Lists can be "grown" by using += with the list or l.append().
- Tuples are indicated by commas without square brackets (and are usually shown with parentheses - which are required if trying to make a tuple an entry in a tuple or a list); tuple items cannot be changed but mutable items within tuples can be
- Strings are set off with " " or ' ' and contain characters; string items cannot be changed
- For lists, tuples, and strings:
- Using + concatenates the two collections
- Using * with them makes creates a collection with the original repeated that many times
- Using += will create a new item with something appended to the old item; the "something" needs to be the same type (list, tuple, or string); this may seem to break the "can't be changed" rule but really
a += b
isa = a + b
which creates a newa
.
- Characters in strings have "numerical" values based on the ASCII table (https://www.asciitable.com/)
- Numbers are earlier than lower case letters; lower case letters are earlier than upper case letters
- Strings are sorted character by character; if one string is shorter than another, it is considered less
- " Hello" < "Hi" is True since the "e" comes before the "i"
- "Zebra" < "apple" is True since the upper case "Z" is before the lower case "a"
- "go" < "gone" is True since the first two characters match and then the word is done
- To get the numerical value of a single character, use
ord("A")
or replace the A with the character you want - To get the character a number represents, use
chr(NUM)
- To apply either ord or chr to multiple items, use a
map
; to see the results, make alist
out of the map - Trinket
- To read more: