Difference between revisions of "Talk:EGR 224/Spring 2009/Test 2"

From PrattWiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
How exactly does one take the magnitude of a transfer function? My understanding was to take the square root of the sum of the squares of the components of the numerator over the same for the denominator. Why/how is this done different is A&W equation 14.10.3? I see that they use j^2=-1, but I don't get the same answer if I leave it a j^2. Also what is the reason for dropping the j's when taking a magnitude? --[[User:Brs16|Brs16]] 18:28, 28 March 2009 (EDT)
 
How exactly does one take the magnitude of a transfer function? My understanding was to take the square root of the sum of the squares of the components of the numerator over the same for the denominator. Why/how is this done different is A&W equation 14.10.3? I see that they use j^2=-1, but I don't get the same answer if I leave it a j^2. Also what is the reason for dropping the j's when taking a magnitude? --[[User:Brs16|Brs16]] 18:28, 28 March 2009 (EDT)
  
Generating a Bode plot for functions that are already factored or easily factored is straightforward. All the examples in the book or that we did in class are like this so the poles and zeros and easily found. How do you approach generating a bode plot for a transfer function with complex poles or roots? Are these considered "too tricky?" Do "multiple zero/pole systems" mean transfer functions that are already factored? --[[User:Brs16|Brs16]] 18:28, 28 March 2009 (EDT)
+
Generating a Bode plot for functions that are already factored or easily factored is straightforward. All the examples in the book or that we did in class are like this so the poles and zeros and easily found. How do you approach generating a bode plot for a transfer function that cannot easily be factored (like a typical bandpass)? Are these considered "too tricky?" Do "multiple zero/pole systems" mean transfer functions that are already factored? --[[User:Brs16|Brs16]] 18:28, 28 March 2009 (EDT)

Revision as of 22:33, 28 March 2009

How exactly does one take the magnitude of a transfer function? My understanding was to take the square root of the sum of the squares of the components of the numerator over the same for the denominator. Why/how is this done different is A&W equation 14.10.3? I see that they use j^2=-1, but I don't get the same answer if I leave it a j^2. Also what is the reason for dropping the j's when taking a magnitude? --Brs16 18:28, 28 March 2009 (EDT)

Generating a Bode plot for functions that are already factored or easily factored is straightforward. All the examples in the book or that we did in class are like this so the poles and zeros and easily found. How do you approach generating a bode plot for a transfer function that cannot easily be factored (like a typical bandpass)? Are these considered "too tricky?" Do "multiple zero/pole systems" mean transfer functions that are already factored? --Brs16 18:28, 28 March 2009 (EDT)