Difference between revisions of "User:DukeEgr93/MagOrder"

From PrattWiki
Jump to navigation Jump to search
 
Line 27: Line 27:
 
</math></center>
 
</math></center>
 
which makes sense since <math>H</math> is the magnitude of <math>\Bbb{H}</math>.
 
which makes sense since <math>H</math> is the magnitude of <math>\Bbb{H}</math>.
 +
 +
== Derivative First ==
 +
 +
<center><math>
 +
\begin{align}
 +
\left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right|&=
 +
\left|\frac{d}{d\omega}\left( H(\omega)e^{j\theta(\omega)} \right)\right|
 +
\end{align}
 +
</math></center>

Revision as of 19:26, 20 November 2009

Question: for a transfer function

\( \begin{align} \Bbb{H}(j\omega)&=H(\omega)e^{j\theta(\omega)} \end{align} \)

what is the relationship between

\( \begin{align} \frac{d}{d\omega}\left(\left|\Bbb{H}(j\omega)\right|\right) \end{align} \)

and

\( \begin{align} \left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right| \end{align} \)

Magnitude First

\( \begin{align} \frac{d}{d\omega}\left(\left|\Bbb{H}(j\omega)\right|\right)&= \frac{d}{d\omega}\left(\left|H(\omega)e^{j\theta(\omega)}\right|\right)\\ ~&=\frac{d}{d\omega}\left(H(\omega)\right) \end{align} \)

which makes sense since \(H\) is the magnitude of \(\Bbb{H}\).

Derivative First

\( \begin{align} \left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right|&= \left|\frac{d}{d\omega}\left( H(\omega)e^{j\theta(\omega)} \right)\right| \end{align} \)