Difference between revisions of "ECE 110/Concept List/F22"

From PrattWiki
Jump to navigation Jump to search
Line 42: Line 42:
 
* Simple Node Voltage Method (resistors and voltage sources)
 
* Simple Node Voltage Method (resistors and voltage sources)
  
 +
== Lecture 6 - 9/16 ==
 +
* More Node Voltage Method
 +
** Examples in Resources/Examples/Methods page on Sakai
  
<!--
+
== Lecture 7 - 9/19 ==
== Lecture 7 ==
+
* Mesh Current Method
 +
** Examples in Resources/Examples/Methods page on Sakai
 +
* Symbolic calculations in SymPy
 +
** [[SymPy/Simultaneous Equations]] has some info
 +
** Examples in Resources/Examples/Methods page on Sakai
  
* Examples in Resources/Examples/Methods page on Sakai
+
== Lecture 8 - 9/22 ==
 
 
== Lecture 8 ==
 
 
* Branch Current Method
 
* Branch Current Method
* Mesh Current Method
+
** Examples in Resources/Examples/Methods page on Sakai
* Examples in Resources/Examples/Methods page on Sakai
 
 
 
== Lecture 9 ==
 
 
* Linearity
 
* Linearity
 
** Nonlinear system examples (additive constants, powers other than 1, trig):
 
** Nonlinear system examples (additive constants, powers other than 1, trig):
Line 71: Line 73:
 
* Superposition
 
* Superposition
 
** Redraw the circuit as many times as needed to focus on each independent source individually
 
** Redraw the circuit as many times as needed to focus on each independent source individually
** If there are dependent sources, you must keep them activated and solve for measurements each time
+
** If there are dependent sources, you must keep them activated and solve for measurements each time, and you must calculate any controlling variables each time
 +
** You cannot calculate power until you have the total, final currents or voltages for elements - power is nonlinear!
 +
 
 +
 
 +
<!--
  
== Lecture 10 ==
 
 
* Thévenin and Norton Equivalents
 
* Thévenin and Norton Equivalents
 
* Circuits with independent sources, dependent sources, and resistances can be reduced to a single source and resistance from the perspective of any two nodes
 
* Circuits with independent sources, dependent sources, and resistances can be reduced to a single source and resistance from the perspective of any two nodes

Revision as of 03:04, 23 September 2022

$$\newcommand{E}[2]{#1_{\mathrm{#2}}}$$List of concepts from each lecture in ECE_110 -- this is the Fall 2022 version.

Lecture 1 - 8/29

  • Main web page: http://classes.pratt.duke.edu/ECE110F22/
  • Circuit terms (Element, Circuit, Path, Branch and Essential Branch, Node and Essential Node, Loop and Mesh).
  • Electrical quantities (charge, current, voltage, power)

Lecture 2 - 9/2

  • Passive ($$+\rightarrow -$$) Sign Convention and Active ($$-\rightarrow +$$) Sign Convention
  • Circuit topology (parallel, series)
  • Passive Sign Convention and Active Sign Convention and relation to calculating power absorbed and/or power delivered
  • Conservation Laws (conservation of power, Kirchhoff's Voltage Law, Kirchhoff's Current Law):
    $$ \begin{align*} \sum_{\mbox{all elements}}\E{p}{abs}&=0 & \sum_{\mbox{closed path}}\E{v}{drop}&=0 & \sum_{\mbox{closed shape}}\E{i}{leaving}&=0 \end{align*} $$
  • Accounting:
    • The number of independent KVL equations is equal to the number of meshes
    • The number of independent KCL equations is equal to the number of nodes minus one
  • Example of how to find $$i$$, $$v$$, and $$p_{\mathrm{abs}}$$
  • $$i$$-$$v$$ characteristics of various elements (short circuit, open circuit, switch, ideal independent voltage source, ideal independent current source, resistor)
  • Resistance $$R$$ in $$\Omega$$, Conductance $$G$$ in $$\mho$$ or S.
    • For a resistor, $$v=Ri$$
    • For purely resistive elements, $$R=\frac{1}{G}$$, so $$i=Gv$$ as well!


Lecture 3 - 9/5

  • Dependent sources (VCVS, VCCS, CCVS, CCCS)
  • Brute Force Method and labels
  • Equivalents for voltage sources in series, current sources in parallel
  • Ability to rearrange items in series or parallel (no impact on element values; may impact node / mesh values)

Lecture 4 - 9/9

  • How resistance is calculated $$R=\frac{\rho L}{A}$$
  • Equivalent resistances; Examples/Req
  • Voltage division (and redivision)

Lecture 5 - 9/12

  • Current division (and redivision)
  • Simple Node Voltage Method (resistors and voltage sources)

Lecture 6 - 9/16

  • More Node Voltage Method
    • Examples in Resources/Examples/Methods page on Sakai

Lecture 7 - 9/19

  • Mesh Current Method
    • Examples in Resources/Examples/Methods page on Sakai
  • Symbolic calculations in SymPy

Lecture 8 - 9/22

  • Branch Current Method
    • Examples in Resources/Examples/Methods page on Sakai
  • Linearity
    • Nonlinear system examples (additive constants, powers other than 1, trig):
$$\begin{align*} y(t)&=x(t)+1\\ y(t)&=(x(t))^n, n\neq 1\\ y(t)&=\cos(x(t)) \end{align*} $$
    • Linear system examples (multiplicative constants, derivatives, integrals):
$$\begin{align*} y(t)&=ax(t)\\ y(t)&=\frac{d^nx(t)}{dt^n}\\ y(t)&=\int x(\tau)~d\tau \end{align*} $$
  • Superposition
    • Redraw the circuit as many times as needed to focus on each independent source individually
    • If there are dependent sources, you must keep them activated and solve for measurements each time, and you must calculate any controlling variables each time
    • You cannot calculate power until you have the total, final currents or voltages for elements - power is nonlinear!