Difference between revisions of "User:DukeEgr93/MagOrder"

From PrattWiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 33: Line 33:
 
\begin{align}
 
\begin{align}
 
\left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right|&=
 
\left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right|&=
\left|\frac{d}{d\omega}\left( H(\omega)e^{j\theta(\omega)} \right)\right|
+
\left|\frac{d}{d\omega}\left( H(\omega)e^{j\theta(\omega)} \right)\right|\\
 +
~&=\left| \left(
 +
\frac{d}{d\omega}H(\omega)e^{j\theta(\omega)}+
 +
H(\omega)e^{j\theta(\omega)} j\frac{d}{d\omega}\theta(\omega)
 +
\right)\right|\\
 +
~&=\left|
 +
\frac{d}{d\omega}H(\omega)+
 +
H(\omega) j\frac{d}{d\omega}\theta(\omega)
 +
\right|
 
\end{align}
 
\end{align}
 
</math></center>
 
</math></center>
 +
 +
== Comparison ==
 +
These two calculations will thus have the same magnitude (though potentially different signs) if
 +
 +
<center><math>
 +
\begin{align}
 +
H(\omega)&=0 &
 +
\mbox{o}&\mbox{r} &
 +
\frac{d}{d\omega}\theta(\omega)&=0
 +
\end{align}
 +
</math></center>
 +
 +
otherwise, due to the orthogonality of the terms, they must have different magnitudes.

Latest revision as of 19:38, 20 November 2009

Question: for a transfer function

\( \begin{align} \Bbb{H}(j\omega)&=H(\omega)e^{j\theta(\omega)} \end{align} \)

what is the relationship between

\( \begin{align} \frac{d}{d\omega}\left(\left|\Bbb{H}(j\omega)\right|\right) \end{align} \)

and

\( \begin{align} \left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right| \end{align} \)

Magnitude First

\( \begin{align} \frac{d}{d\omega}\left(\left|\Bbb{H}(j\omega)\right|\right)&= \frac{d}{d\omega}\left(\left|H(\omega)e^{j\theta(\omega)}\right|\right)\\ ~&=\frac{d}{d\omega}\left(H(\omega)\right) \end{align} \)

which makes sense since \(H\) is the magnitude of \(\Bbb{H}\).

Derivative First

\( \begin{align} \left|\frac{d}{d\omega}\left(\Bbb{H}(j\omega)\right)\right|&= \left|\frac{d}{d\omega}\left( H(\omega)e^{j\theta(\omega)} \right)\right|\\ ~&=\left| \left( \frac{d}{d\omega}H(\omega)e^{j\theta(\omega)}+ H(\omega)e^{j\theta(\omega)} j\frac{d}{d\omega}\theta(\omega) \right)\right|\\ ~&=\left| \frac{d}{d\omega}H(\omega)+ H(\omega) j\frac{d}{d\omega}\theta(\omega) \right| \end{align} \)

Comparison

These two calculations will thus have the same magnitude (though potentially different signs) if

\( \begin{align} H(\omega)&=0 & \mbox{o}&\mbox{r} & \frac{d}{d\omega}\theta(\omega)&=0 \end{align} \)

otherwise, due to the orthogonality of the terms, they must have different magnitudes.