Difference between revisions of "Convolution Shortcuts"
(→Convolution Between Exponentials) |
(→Convolution Between Exponentials) |
||
(One intermediate revision by the same user not shown) | |||
Line 8: | Line 8: | ||
\end{align}</math></center> | \end{align}</math></center> | ||
− | ==Convolution with | + | ==Convolution with Steps and Ramps== |
<center><math>\begin{align} | <center><math>\begin{align} | ||
u(t)*f(t)&=\int_{-\infty}^{t}f(\tau)~d\tau\\ | u(t)*f(t)&=\int_{-\infty}^{t}f(\tau)~d\tau\\ | ||
Line 23: | Line 23: | ||
==Convolution Between Exponentials== | ==Convolution Between Exponentials== | ||
− | Note - the following work if $a$ and/or $b$ is 0. | + | Note - the following work if $$a$$ and/or $$b$$ is 0. |
* Same exponent | * Same exponent | ||
<center><math>\begin{align} | <center><math>\begin{align} |
Latest revision as of 01:43, 18 September 2023
The following is a list of convolutions that are good to know. In each case, \(f(t)\) represents an arbitrary function while \(a\) and \(b\) represent constants.
Contents
Convolution with Impulses
Convolution with Steps and Ramps
Convolution Between Singularity Functions
Convolution Between Exponentials
Note - the following work if $$a$$ and/or $$b$$ is 0.
- Same exponent
- Different exponents
- "Single" exponent
Examples
Exponential and Shifted Step
Find \(y(t)\) if \(x(t)=u(t-a)\) and \(h(t)=e^{-2t}u(t)\):
Questions
Post your questions by editing the discussion page of this article. Edit the page, then scroll to the bottom and add a question by putting in the characters *{{Q}}, followed by your question and finally your signature (with four tildes, i.e. ~~~~). Using the {{Q}} will automatically put the page in the category of pages with questions - other editors hoping to help out can then go to that category page to see where the questions are. See the page for Template:Q for details and examples.