Difference between revisions of "Pioneer/Imaging Lab 1"

From PrattWiki
Jump to navigation Jump to search
(Example 11: Chips!)
(Example 12: Chip Edges!)
Line 289: Line 289:
 
=== Example 12: Chip Edges!===
 
=== Example 12: Chip Edges!===
 
<syntaxhighlight lang=python>
 
<syntaxhighlight lang=python>
from matplotlib.colors import ListedColormap
+
import matplotlib.image as mpimg
 
imgo = mpimg.imread("amandajones_chips_unsplash.jpg")
 
imgo = mpimg.imread("amandajones_chips_unsplash.jpg")
 
img = imgo[::10, ::10, :]
 
img = imgo[::10, ::10, :]
Line 308: Line 308:
 
     fig, ax = plt.subplots(num=k+2, clear=True)
 
     fig, ax = plt.subplots(num=k+2, clear=True)
 
     edgevals[:,:,k] = sig.convolve2d(img[:,:,k], h, "valid")
 
     edgevals[:,:,k] = sig.convolve2d(img[:,:,k], h, "valid")
     aplot1 = ax.imshow(edgevals[:,:,k], cmap=plt.cm.gray, vmin=-1024, vmax=1024)
+
     aplot1 = ax.imshow(edgevals[:,:,k], cmap=plt.cm.gray, vmin=-1020, vmax=1020)
 
     ax.axis('equal')
 
     ax.axis('equal')
 
     ax.set(title=names[k]+" Edges as Gray")
 
     ax.set(title=names[k]+" Edges as Gray")
Line 316: Line 316:
 
      
 
      
 
     fig, ax = plt.subplots(num=k+5, clear=True)
 
     fig, ax = plt.subplots(num=k+5, clear=True)
     aplot2 = ax.imshow(edgevals[:,:,k], cmap=plt.cm.gray, vmin=0, vmax=1024)
+
     aplot2 = ax.imshow(edgevals[:,:,k], cmap=plt.cm.gray, vmin=0, vmax=1020)
 
     ax.axis('equal')
 
     ax.axis('equal')
 
     ax.set(title="Absolute " + names[k]+" Edges as Gray")
 
     ax.set(title="Absolute " + names[k]+" Edges as Gray")

Revision as of 00:48, 6 August 2021

This page serves as a supplement to the first Digital Image Processing Lab for the Summer 2021 Pioneer Program.

Corrections / Clarifications to the Handout

  • None yet

Running Python

You need to have Anaconda installed, which includes the Spyder IDE and all the modules that we need for this assignment.

Scikit Image

See Pioneer21/Lecture03 for more details about using the scikit-image module.

Links

Examples

The following sections will contain both the example programs given in the lab as well as the image or images they produce. You should still type these into your own version of Python to make sure you are getting the same answers. These are provided so you can compare what you get with what we think you should get.

Example 1: Black & White Images

PS21DI1E1Plot1.png
PS21DI1E1Plot2.png
a = np.array([
    [1, 0, 1, 0, 0],
    [1, 0, 1, 0, 1],
    [1, 1, 1, 0, 0],
    [1, 0, 1, 0, 1],
    [1, 0, 1, 0, 1]])
fig, ax = plt.subplots(num=1, clear=True)
ax.imshow(a, cmap=plt.cm.gray)
ax.set_axis_off()
fig.tight_layout()
fig.savefig("PS21DI1E1Plot1.png")
fig, ax = plt.subplots(num=2, clear=True)
aplot2 = ax.imshow(a, cmap=plt.cm.gray)
fig.colorbar(aplot2)
fig.tight_layout()
fig.savefig("PS21DI1E1Plot2.png")


Example 2: Simple Grayscale Images

PS21DI1E2Plot1.png
PS21DI1E2Plot2.png
bx, by = np.meshgrid(range(255), range(255))
fig, ax = plt.subplots(num=1, clear=True)
aplot1 = ax.imshow(bx, cmap=plt.cm.gray)
fig.colorbar(aplot1)
fig.tight_layout()
fig.savefig("PS21DI1E2Plot1.png")
fig, ax = plt.subplots(num=2, clear=True)
aplot2 = ax.imshow(by, cmap=plt.cm.gray)
fig.colorbar(aplot2)
fig.tight_layout()
fig.savefig("PS21DI1E2Plot1.png")


Example 3: Less Simple Grayscale Images

PS21DI1E3Plot1.png
x, y = np.meshgrid(np.linspace(0, 2*np.pi, 201),
                   np.linspace(0, 2*np.pi, 201));
z = np.cos(x)*np.cos(2*y);
fig, ax = plt.subplots(num=1, clear=True)
zplot = ax.imshow(z, cmap=plt.cm.gray)
ax.axis('equal')
fig.colorbar(zplot)
fig.tight_layout()
fig.savefig("PS21DI1E3Plot1.png")

Notice how the use of ax.axis('equal') made the image look like a square since it is 201x201 but also caused the display to be filled with whitespace as a result of the figure size versus the image size.

Example 4: Building an Image

PS21DI1E4Plot1.png
rad = 100
delta = 10
x, y =np.meshgrid(range((-3*rad-delta),(3*rad+delta)+1),
                  range((-3*rad-delta),(3*rad+delta)+1))
rows, cols = x.shape
dist = lambda x, y, xc, yc: np.sqrt((x-xc)**2+(y-yc)**2)
venn_img = np.zeros((rows, cols, 3));
venn_img[:,:,0] = (dist(x, y, rad*np.cos(0), rad*np.sin(0)) < 2*rad);
venn_img[:,:,1] = (dist(x, y, rad*np.cos(2*np.pi/3), rad*np.sin(2*np.pi/3)) < 2*rad);
venn_img[:,:,2] = (dist(x, y, rad*np.cos(4*np.pi/3), rad*np.sin(4*np.pi/3)) < 2*rad);
fig, ax = plt.subplots(num=1, clear=True)
ax.imshow(venn_img)
ax.axis('equal')
fig.tight_layout()
fig.savefig("PS21DI1E4Plot1.png")


Example 5: Exploring Colors

PS21DI1E5Plot1.png
nr = 256
nc = 256
x, y = np.meshgrid(np.linspace(0, 1, nc),
                   np.linspace(0, 1, nr))
other = 0.5;
palette = np.zeros((nr, nc, 3))
palette[:,:,0] = x
palette[:,:,1] = y
palette[:,:,2] = other
fig, ax = plt.subplots(num=1, clear=True)
ax.imshow(palette)
ax.axis('equal')
fig.tight_layout()
fig.savefig("PS21DI1E5Plot1.png")


Example 6: 1D Convolution

x = np.array([1, 2, 4, 8, 7, 5, -1])
h = np.array([1, -1])
y = sig.convolve(x, h)
print("x: {}\nh: {}\ny: {}".format(x, h, y))
x: [ 1  2  4  8  7  5 -1]
h: [ 1 -1]
y: [ 1  1  2  4 -1 -2 -6  1]


Example 7: 1D Convolution Using "same"

x = np.array([1, 2, 4, 8, 7, 5, -1])
h = np.array([1, -1])
y = sig.convolve(x, h, "same")
print("x: {}\nh: {}\ny: {}".format(x, h, y))
x: [ 1  2  4  8  7  5 -1]
h: [ 1 -1]
y: [ 1  1  2  4 -1 -2 -6]


Example 8: 11x11 Blurring

PS21DI1E8Plot1.png
PS21DI1E8Plot2.png
x = ski.data.coins()
h = np.ones((11, 11))/11**2;
y = sig.convolve2d(x, h, 'same');
fig, ax = plt.subplots(num=1, clear=True)
aplot1 = ax.imshow(x, cmap=plt.cm.gray, vmin=0, vmax=255)
ax.axis('equal')
ax.set(title='Original')
fig.colorbar(aplot1)
fig.tight_layout()
fig.savefig("PS21DI1E8Plot1.png")
fig, ax = plt.subplots(num=2, clear=True)
aplot2 = ax.imshow(y, cmap=plt.cm.gray, vmin=0, vmax=255)
ax.axis('equal')
ax.set(title='Blurred')
fig.colorbar(aplot2)
fig.tight_layout()
fig.savefig("PS21DI1E8Plot2.png")


Example 9: Make No Assumptions

x = np.array([1, 2, 4, 8, 7, 5, -1])
h = np.array([1, -1])
y = sig.convolve(x, h, "valid")
print("x: {}\nh: {}\ny: {}".format(x, h, y))
x: [ 1  2  4  8  7  5 -1]
h: [ 1 -1]
y: [ 1  2  4 -1 -2 -6]


Example 10: Basic Edge Detection and Display

x, y = np.meshgrid(np.linspace(-1, 1, 200),
                   np.linspace(-1, 1, 200));
z1 = (.7<np.sqrt(x**2+y**2)) * (np.sqrt(x**2+y**2)<.9)
z2 = (.3<np.sqrt(x**2+y**2)) * (np.sqrt(x**2+y**2)<.5)
zimg = 100*z1+200*z2;
fig, ax = plt.subplots(num=1, clear=True)
aplot1 = ax.imshow(zimg, cmap=plt.cm.gray, vmin=0, vmax=255)
ax.axis('equal')
ax.set(title='Original')
fig.colorbar(aplot1)
fig.tight_layout()
fig.savefig("PS21DI1E9Plot1.png")

hx = np.array([[1, -1], [1, -1]])
edgex = sig.convolve2d(zimg, hx, 'valid')
fig, ax = plt.subplots(num=2, clear=True)
aplot2 = ax.imshow(edgex, cmap=plt.cm.gray)
ax.axis('equal')
ax.set(title='Vertical Edges')
fig.colorbar(aplot2)
fig.tight_layout()
fig.savefig("PS21DI1E9Plot2.png")

hy = np.array([[1, 1], [-1, -1]])
edgey = sig.convolve2d(zimg, hy, 'valid')
fig, ax = plt.subplots(num=3, clear=True)
aplot3 = ax.imshow(edgey, cmap=plt.cm.gray)
ax.axis('equal')
ax.set(title='Horizontal Edges')
fig.colorbar(aplot3)
fig.tight_layout()
fig.savefig("PS21DI1E9Plot3.png")

edges = np.sqrt(edgex**2 + edgey**2)
fig, ax = plt.subplots(num=4, clear=True)
aplot4 = ax.imshow(edges, cmap=plt.cm.gray)
ax.axis('equal')
ax.set(title='Edges')
fig.colorbar(aplot4)
fig.tight_layout()
fig.savefig("PS21DI1E9Plot4.png")


Example 11: Chips!

For this example, save the image at right to a file called "amandajones_chips_unsplash.jpg" in the same folder as Python is running. This image comes from, Amanda Jones' Unsplash page and is free to use for non-commercial use.

Amandajones chips unsplash.jpg
import matplotlib.image as mpimg
from matplotlib.colors import ListedColormap
img = mpimg.imread("amandajones_chips_unsplash.jpg")

fig, ax = plt.subplots(num=1, clear=True)
ax.imshow(img)
ax.axis('equal')
ax.set(title='Original')
fig.tight_layout()
fig.savefig("PS21DI1E11Plot1.png")
vals = np.linspace(0, 1, 256)
names = ['Red', 'Green', 'Blue']
for k in range(3):
    fig, ax = plt.subplots(num=k+2, clear=True)
    aplot1 = ax.imshow(img[:,:,k], cmap=plt.cm.gray, vmin=0, vmax=255)
    ax.axis('equal')
    ax.set(title=names[k]+" as Gray")
    fig.colorbar(aplot1)
    fig.tight_layout()
    fig.savefig("PS21DI1E11Plot{}.png".format(k+2))
    
    fig, ax = plt.subplots(num=k+5, clear=True)
    mycmvals = np.zeros((256,4))
    mycmvals[:,k] = vals
    mycmvals[:,3] = 1
    mycm = ListedColormap(mycmvals)
    aplot2 = ax.imshow(img[:,:,k], cmap=mycm, vmin=0, vmax=255)
    ax.axis('equal')
    ax.set(title=names[k]+" as "+names[k])
    fig.colorbar(aplot2)
    fig.tight_layout()
    fig.savefig("PS21DI1E11Plot{}.png".format(k+5))


Example 12: Chip Edges!

import matplotlib.image as mpimg
imgo = mpimg.imread("amandajones_chips_unsplash.jpg")
img = imgo[::10, ::10, :]

fig, ax = plt.subplots(num=1, clear=True)
ax.imshow(img)
ax.axis('equal')
ax.set(title='Scaled Down Original')
fig.tight_layout()
fig.savefig("PS21DI1E12Plot1.png")
vals = np.linspace(0, 1, 256)
names = ['Red', 'Green', 'Blue']
h = np.array([[1, 0, -1],[ 2, 0, -2], [ 1, 0, -1]])
edgevals = np.zeros((img.shape[0]-h.shape[0]+1,
                     img.shape[1]-h.shape[1]+1,
                     3))
for k in range(3):
    fig, ax = plt.subplots(num=k+2, clear=True)
    edgevals[:,:,k] = sig.convolve2d(img[:,:,k], h, "valid")
    aplot1 = ax.imshow(edgevals[:,:,k], cmap=plt.cm.gray, vmin=-1020, vmax=1020)
    ax.axis('equal')
    ax.set(title=names[k]+" Edges as Gray")
    fig.colorbar(aplot1)
    fig.tight_layout()
    fig.savefig("PS21DI1E12Plot{}.png".format(k+2))
    
    fig, ax = plt.subplots(num=k+5, clear=True)
    aplot2 = ax.imshow(edgevals[:,:,k], cmap=plt.cm.gray, vmin=0, vmax=1020)
    ax.axis('equal')
    ax.set(title="Absolute " + names[k]+" Edges as Gray")
    fig.colorbar(aplot2)
    fig.tight_layout()
    fig.savefig("PS21DI1E12Plot{}.png".format(k+5))

fig, ax = plt.subplots(num=8, clear=True)
edgevals2 = (edgevals + abs(edgevals).max()) / 2 / abs(edgevals).max()
ax.imshow(edgevals2)
ax.axis('equal')
ax.set(title="Colorful Edges")
fig.tight_layout()
fig.savefig("PS21DI1E12Plot8.png")

fig, ax = plt.subplots(num=9, clear=True)
edgevals3 = np.linalg.norm(edgevals, ord=2, axis=2)
ax.imshow(edgevals3, cmap=plt.cm.gray)
ax.axis('equal')
ax.set(title="Absolute Edges")
fig.tight_layout()
fig.savefig("PS21DI1E12Plot9.png")