Difference between revisions of "Sandbox"

From PrattWiki
Jump to navigation Jump to search
Line 1: Line 1:
<syntaxhighlight  lang='python' line highlight='2'>
+
<html></html>
And a one
 
and a two
 
and a three
 
</syntaxhighlight>
 
  
<syntaxhighlight  lang='python' highlight='2'>
 
And a one
 
and a two
 
and a three
 
</syntaxhighlight>
 
 
<syntaxhighlight lang="matlab">
 
clear
 
format short e
 
plot(x, y, 'k--')
 
</syntaxhighlight>
 
 
alpha: <math>1+1</math>
 
$\alpha$
 
$$\alpha$$
 
  
 
<center><math>
 
<center><math>

Revision as of 17:37, 17 September 2019


\( \begin{align} H&=\frac{j\omega+8}{(j\omega)^2+4*j\omega+13}\\ H&=\frac{s+8}{(s+2)^2+(3)^2}=\frac{A(s+2)+B(3)}{(s+2)^2+(3)^2} \end{align} \)

From the \(s\) in the numerator, you can see that \(A\) is 1. That means the numerator so far is \(1(s+2)\) Therefore, there is already a constant 2 up top. To get the total of 8, then \(B\) needs to be 2. That is:

\( \begin{align} H&=\frac{s+8}{(s+2)^2+(3)^2}=\frac{A(s+2)+B(3)}{(s+2)^2+(3)^2}=\frac{1(s+2)+2(3)}{(s+2)^2+(3)^2} \end{align} \)

meaning

\( h(t):=e^{-2t}\left(1*\cos(3t)+2*\sin(3t)\right)~u(t) \)

It is now possible to do inline math such as $$c=\sqrt{a^2+b^2}$$ with double dollar signs around the math.