Difference between revisions of "Fourier Series"
Line 6: | Line 6: | ||
electrical system, respectively. | electrical system, respectively. | ||
− | + | ==Synthesis Equations== | |
There are three primary Fourier series representations of a periodic | There are three primary Fourier series representations of a periodic | ||
− | signal | + | signal <math>f(t)</math> |
− | with period | + | with period <math>T</math> and fundamental frequency <math>\omega_0=\frac{2\pi}{T}</math> |
− | \begin{align | + | (using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition): |
− | \mbox{Trigonometric Series}&~ & f(t)&= | + | <center><math> |
− | \sum_{n=1}^{\infty}\left( | + | \begin{align} |
− | + | \mbox{Trigonometric Series}&~ & f(t)&=a_0+ | |
+ | \sum_{n=1}^{\infty}\left(a_n~\cos(n\omega_0 t) + | ||
+ | b_n~\sin(n\omega_0 t)\right)\\ | ||
\mbox{Cosine Series} &~ & f(t)&= | \mbox{Cosine Series} &~ & f(t)&= | ||
− | + | c_0 + \sum_{n=1}^{\infty}c_n~\cos(n\omega_0 t+\theta_n)\\ | |
\mbox{Exponential Series} &~ & f(t)&= | \mbox{Exponential Series} &~ & f(t)&= | ||
− | \sum_{k=-\infty}^{\infty} | + | \sum_{k=-\infty}^{\infty}\mathbb{C}_n~e^{jn\omega_0 t} |
− | \end{align | + | \end{align} |
− | In the series above, | + | </math></center> |
− | numbers while | + | In the series above, <math>a_0</math>, <math>a_n</math>, <math>b_n</math>, <math>c_0</math>, <math>c_n</math>, |
− | Also note that the index | + | and <math>\theta_n</math> are real |
− | while | + | numbers while <math>\mathbb{C}_n</math> may be complex. |
+ | <!-- | ||
+ | Also note that the index <math>n</math> is used for summations between 1 and <math>\infty</math> | ||
+ | while <math>k</math> is used for the summation between <math>-\infty</math> to <math>\infty</math> | ||
primarily to demonstrate the different ranges of the summations. | primarily to demonstrate the different ranges of the summations. | ||
+ | --> | ||
− | + | ==Analysis Equations== | |
The formulas for obtaining the Fourier series coefficients are: | The formulas for obtaining the Fourier series coefficients are: | ||
− | \begin{align | + | <center><math> |
− | + | \begin{align} | |
− | + | a_n&=\frac{2}{T}\int_{T}f(t)~\cos(n\omega_0t)~dt & | |
− | + | b_n&=\frac{2}{T}\int_{T}f(t)~\sin(n\omega_0t)~dt \\ | |
− | \ | + | a_0=c_0&=\frac{1}{T}\int_{T}f(t)~dt & c_n&= \sqrt{a_n^2+b_n^2} \\ |
− | + | \theta_n&= | |
− | \end{align | + | \begin{cases} |
+ | -\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\ | ||
+ | 180^{\circ}-\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n<0 | ||
+ | \end{cases}\\ | ||
+ | \mathbb{C}_n&=\frac{1}{T}\int_Tf(t)~e^{-jn\omega_0t}~dt & | ||
+ | \end{align} | ||
+ | </math></center> | ||
− | + | ==Translation Table== | |
− | |||
The table below summarizes how to get one set of Fourier Series | The table below summarizes how to get one set of Fourier Series | ||
coefficients from any other representation. Note that it is assumed | coefficients from any other representation. Note that it is assumed | ||
− | the function being represented is real - meaning | + | the function being represented is real - meaning <math>a_n=a_{-n}^*</math>. |
− | Also, | + | Also, <math>n>0</math> in the table. The core equations at use in the |
translation table are: | translation table are: | ||
− | \begin{align | + | <center><math> |
+ | \begin{align} | ||
e^{j\theta}&=\cos(\theta)+j\sin(\theta)\\ | e^{j\theta}&=\cos(\theta)+j\sin(\theta)\\ | ||
− | cos(\theta+\phi)&=\cos(\theta)\cos(\phi)-\sin(\theta)\sin(\phi) | + | \cos(\theta+\phi)&=\cos(\theta)\cos(\phi)-\sin(\theta)\sin(\phi)\\ |
− | \end{align | + | \mbox{atan2}(b_n,a_n)&= |
+ | \begin{cases} | ||
+ | \tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\ | ||
+ | \tan^{-1}-180^{\circ}\left(\frac{b_n}{a_n}\right) & a_n<0 | ||
+ | \end{cases}\\ | ||
+ | \end{align} | ||
+ | </math></center> | ||
− | + | <center><math> | |
− | \begin{align | + | \begin{align} |
\begin{array}{|c|c|c|c|} \hline | \begin{array}{|c|c|c|c|} \hline | ||
− | \mbox{ | + | \mbox{Find:} & \mbox{From trig} & \mbox{From cosine} & \mbox{From exponential} \\ |
− | |||
− | |||
\hline | \hline | ||
− | + | a_n & a_n & c_n\cos(\theta_n) & \mathbb{C}_n+\mathbb{C}_{-n}=2\Re\{\mathbb{C}_n\}\\ \hline | |
− | + | b_n & b_n & -c_n\sin(\theta_n) & j\left(\mathbb{C}_n-\mathbb{C}_{-n}\right)=-2\Im\{\mathbb{C}_n\}\\ \hline | |
− | + | a_0=c_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline | |
− | + | c_n & \sqrt{a_n^2+b_n^2} & c_n & |\mathbb{C}_n|+|\mathbb{C}_{-n}|=2|\mathbb{C}_n|\\ \hline | |
− | \ | + | \theta_n & -\mbox{atan2}(b_n,a_n) & \theta_n & \angle \mathbb{C}_n\\ \hline |
− | a_0 & | + | \mathbb{C}_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline |
− | + | \mathbb{C}_n & \frac{a_n}{2}+\frac{b_n}{2j}= | |
− | \frac{ | + | \frac{a_n}{2}-j\frac{b_n}{2} |
− | & \frac{ | + | & \frac{c_n}{2}\angle \theta_n & |
− | + | \mathbb{C}_n\\ \hline | |
− | + | \mathbb{C}_{-n} & \frac{a_n}{2}-\frac{b_n}{2j}= | |
− | \frac{ | + | \frac{a_n}{2}+j\frac{b_n}{2} |
− | & \frac{ | + | & \frac{c_n}{2}\angle -\theta_n &\mathbb{C}_{-n} |
\\ \hline | \\ \hline | ||
\end{array} | \end{array} | ||
− | \end{align | + | \end{align} |
+ | </math></center> | ||
+ | <!-- | ||
+ | --> |
Revision as of 22:51, 1 November 2015
Introduction
This document takes a look at different ways of representing real periodic signals using the Fourier series. It will provide translation tables among the different representations as well as example problems using Fourier series to solve a mechanical system and an electrical system, respectively.
Synthesis Equations
There are three primary Fourier series representations of a periodic signal \(f(t)\) with period \(T\) and fundamental frequency \(\omega_0=\frac{2\pi}{T}\) (using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition):
In the series above, \(a_0\), \(a_n\), \(b_n\), \(c_0\), \(c_n\), and \(\theta_n\) are real numbers while \(\mathbb{C}_n\) may be complex.
Analysis Equations
The formulas for obtaining the Fourier series coefficients are:
Translation Table
The table below summarizes how to get one set of Fourier Series coefficients from any other representation. Note that it is assumed the function being represented is real - meaning \(a_n=a_{-n}^*\). Also, \(n>0\) in the table. The core equations at use in the translation table are: