Difference between revisions of "Fourier Series"

From PrattWiki
Jump to navigation Jump to search
Line 6: Line 6:
 
electrical system, respectively.
 
electrical system, respectively.
  
 +
<!--
 
== ECE 110 Homework 10 Links ==
 
== ECE 110 Homework 10 Links ==
 
* Part I: [https://www.youtube.com/watch?v=LznjC4Lo7lE] and [https://www.youtube.com/watch?v=r18Gi8lSkfM]
 
* Part I: [https://www.youtube.com/watch?v=LznjC4Lo7lE] and [https://www.youtube.com/watch?v=r18Gi8lSkfM]
 
* Part II: [http://codepen.io/andremichelle/pen/LVzMRz]
 
* Part II: [http://codepen.io/andremichelle/pen/LVzMRz]
 
* Part III: [https://www.youtube.com/watch?v=dQw4w9WgXcQ]
 
* Part III: [https://www.youtube.com/watch?v=dQw4w9WgXcQ]
 +
-->
  
 
==Synthesis Equations==
 
==Synthesis Equations==
Line 15: Line 17:
 
signal <math>f(t)</math>  
 
signal <math>f(t)</math>  
 
with period <math>T</math>  and fundamental frequency <math>\omega_0=\frac{2\pi}{T}</math>  
 
with period <math>T</math>  and fundamental frequency <math>\omega_0=\frac{2\pi}{T}</math>  
(using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition):
+
(using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition - please note that Oppenheim & Willsky, Signals & Systems, 2nd edition uses <math>a_k</math> instead of <math>\mathbb{C}_k</math> for the exponential Fourier series coefficients):
 
<center><math>
 
<center><math>
 
\begin{align}
 
\begin{align}
Line 94: Line 96:
 
<!--
 
<!--
 
-->
 
-->
 +
== External Links ==
 +
* [https://www.youtube.com/watch?v=LznjC4Lo7lE Fourier Series Animation using Circles] - YouTube user meyavuz
 +
* [https://www.youtube.com/watch?v=r18Gi8lSkfM Fourier Transform, Fourier Series, and frequency spectrum] - YouTube user Eugene Khutoryansky
 +
* [http://codepen.io/andremichelle/pen/LVzMRz Fourier series pen] - André Michelle

Revision as of 15:53, 11 February 2017

Introduction

This document takes a look at different ways of representing real periodic signals using the Fourier series. It will provide translation tables among the different representations as well as example problems using Fourier series to solve a mechanical system and an electrical system, respectively.


Synthesis Equations

There are three primary Fourier series representations of a periodic signal \(f(t)\) with period \(T\) and fundamental frequency \(\omega_0=\frac{2\pi}{T}\) (using the notation in Svoboda & Dorf, Introduction to Electric Circuits, 9th Edition - please note that Oppenheim & Willsky, Signals & Systems, 2nd edition uses \(a_k\) instead of \(\mathbb{C}_k\) for the exponential Fourier series coefficients):

\( \begin{align} \mbox{Trigonometric Series}&~ & f(t)&=a_0+ \sum_{n=1}^{\infty}\left(a_n~\cos(n\omega_0 t) + b_n~\sin(n\omega_0 t)\right)\\ \mbox{Cosine Series} &~ & f(t)&= c_0 + \sum_{n=1}^{\infty}c_n~\cos(n\omega_0 t+\theta_n)\\ \mbox{Exponential Series} &~ & f(t)&= \sum_{k=-\infty}^{\infty}\mathbb{C}_n~e^{jn\omega_0 t} \end{align} \)

In the series above, \(a_0\), \(a_n\), \(b_n\), \(c_0\), \(c_n\), and \(\theta_n\) are real numbers while \(\mathbb{C}_n\) may be complex.

Analysis Equations

The formulas for obtaining the Fourier series coefficients are:

\( \begin{align} a_n&=\frac{2}{T}\int_{T}f(t)~\cos(n\omega_0t)~dt & b_n&=\frac{2}{T}\int_{T}f(t)~\sin(n\omega_0t)~dt \\ a_0=c_0&=\frac{1}{T}\int_{T}f(t)~dt & c_n&= \sqrt{a_n^2+b_n^2} \\ \theta_n&= \begin{cases} -\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\ 180^{\circ}-\tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n<0 \end{cases}\\ \mathbb{C}_n&=\frac{1}{T}\int_Tf(t)~e^{-jn\omega_0t}~dt & \end{align} \)

Translation Table

The table below summarizes how to get one set of Fourier Series coefficients from any other representation. Note that it is assumed the function being represented is real - meaning \(a_n=a_{-n}^*\). Also, \(n>0\) in the table. The core equations at use in the translation table are:

\( \begin{align} e^{j\theta}&=\cos(\theta)+j\sin(\theta)\\ \cos(\theta+\phi)&=\cos(\theta)\cos(\phi)-\sin(\theta)\sin(\phi)\\ \mbox{atan2}(b_n,a_n)&= \begin{cases} \tan^{-1}\left(\frac{b_n}{a_n}\right) & a_n>0\\ \tan^{-1}-180^{\circ}\left(\frac{b_n}{a_n}\right) & a_n<0 \end{cases}\\ \end{align} \)
\( \begin{align} \begin{array}{|c|c|c|c|} \hline \mbox{Find:} & \mbox{From trig} & \mbox{From cosine} & \mbox{From exponential} \\ \hline a_n & a_n & c_n\cos(\theta_n) & \mathbb{C}_n+\mathbb{C}_{-n}=2\Re\{\mathbb{C}_n\}\\ \hline b_n & b_n & -c_n\sin(\theta_n) & j\left(\mathbb{C}_n-\mathbb{C}_{-n}\right)=-2\Im\{\mathbb{C}_n\}\\ \hline a_0=c_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline c_n & \sqrt{a_n^2+b_n^2} & c_n & |\mathbb{C}_n|+|\mathbb{C}_{-n}|=2|\mathbb{C}_n|\\ \hline \theta_n & -\mbox{atan2}(b_n,a_n) & \theta_n & \angle \mathbb{C}_n\\ \hline \mathbb{C}_0 & a_0 & c_0 & \mathbb{C}_0 \\ \hline \mathbb{C}_n & \frac{a_n}{2}+\frac{b_n}{2j}= \frac{a_n}{2}-j\frac{b_n}{2} & \frac{c_n}{2}\angle \theta_n & \mathbb{C}_n\\ \hline \mathbb{C}_{-n} & \frac{a_n}{2}-\frac{b_n}{2j}= \frac{a_n}{2}+j\frac{b_n}{2} & \frac{c_n}{2}\angle -\theta_n &\mathbb{C}_{-n} \\ \hline \end{array} \end{align} \)

External Links